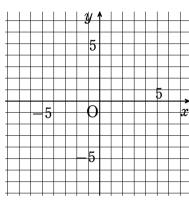
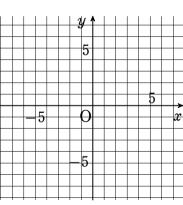

1 次の1次関数のグラフをかきなさい。


(1)
$$y = \frac{1}{2}x - \frac{5}{2}$$

(2)
$$y = -\frac{4}{3}x + \frac{8}{3}$$



2 次の関数のグラフをかきなさい。また、関数のyの変域を求めなさい。

(1)
$$y = 2x - 1$$
 $(0 \le x \le 3)$

(2)
$$y = -\frac{2}{3}x + 2 \quad (-3 \le x \le 6)$$

(1) 直線
$$y=2x-3$$
 に平行で、点 (7, 1) を通る

(2) 直線
$$y = -\frac{4}{3}x$$
 に平行で、点 (5, -6) を通る

(3) 切片が3で、点
$$(-2, -1)$$
を通る

(4) 切片が
$$-2$$
で、点 $(-10, 3)$ を通る

4 次のような直線の式を求めなさい。

(1)
$$2 点 (5, -6), (-3, 2)$$
 を結ぶ線分の中点を通り, $y = 3x$ に平行な直線

(2)
$$x=-5$$
 のとき x 軸 と交わり, $y=3$ のとき y 軸と交わる直線

(3) 直線
$$y=2x+3$$
 と x 軸に関して対称な直線

5 次の問いに答えなさい。

(1) 点
$$(a, -2)$$
 が、直線 $y = -\frac{2}{3}x + 4$ 上にあるとき、定数 a の値を求めなさい。

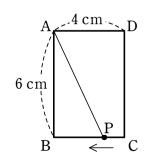
(2) 2 直線 y = ax + b, y = bx - a がともに点(3, -2) を通るとき、定数 a, b の値を求めなさい。

(3) 2 直線 y = 2x - 3, $y = -\frac{1}{2}x + \frac{5}{2}a$ が y 軸上で交わるとき,定数 a の値を求めなさい。

(4) 点(1, 2) とx 軸, y 軸に関してそれぞれ対称な点P, Q がある。直線y = ax + b が 2 点P, Q を通るとき、定数a, b の値を求めなさい。

(5) 直線 y = ax - 3 は点 (1, -2b) を通り、直線 y = x + b は点 (2a, 9) を通る。このとき、定数 a 、b の値を求めなさい。

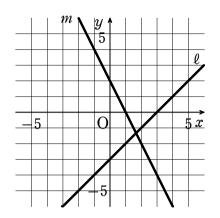
- 6 次の問いに答えなさい。
 - (1) 1次関数 y = ax 5 (a > 0) の定義域が $-3 \le x \le 4$ であるとき、値域が $-17 \le y \le b$ となるように、定数 a, b の値を定めなさい。

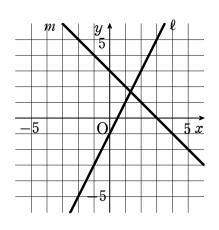

(2) 1次関数 y = ax + 6 (a < 0) の定義域が $-2 \le x \le 2$ であるとき、値域が $0 \le y \le b$ となるように、定数 a, b の値を定めなさい。

(3) 1次関数 y = ax + a + 4 (a < 0) の定義域が $-4 \le x \le 1$ であるとき、値域が $2 \le y \le b$ となるように、定数 a, b の値を定めなさい。

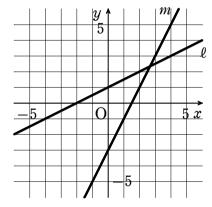
(4) 1次関数 y=-x+3 の定義域が $-1 \le x \le a$ であるとき,値域が $-2 \le y \le b$ となるように,定数 a ,b の値を定めなさい。

(5) 1次関数 y = ax + b の定義域が $-2 \le x \le 3$ であるとき、値域は $-3 \le y \le 7$ となる。 a > 0 のときと a < 0 のときに場合を分け、それぞれの場合の定数 a 、b の値を定めなさい。

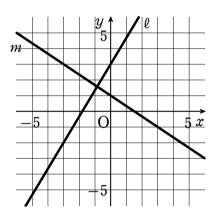

7 右の図の長方形 ABCD において、点 P は辺 BC 上を C から B まで秒速 1 cm で動きます。点 P が動き始めてから x 秒後の $\triangle ABP$ の面積を y cm² として、y を x の式で表しなさい。



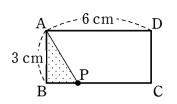
8 次の(1)~(4)の図において、2直線 ℓ 、mの交点の座標をそれぞれ求めなさい。

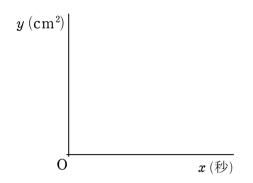

(1)

(2)



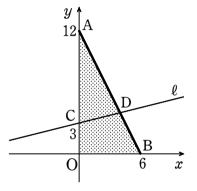
(3)

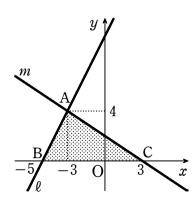



(4)

9 あるばねに 100 g のおもりをつり下げると、ばね全体の長さは 50 cm になり、150 g では、70 cm になりました。ばね全体の長さは、おもりの重さの 1 次関数になっているとします。あるおもりをつり下げると、ばね全体の長さは 32 cm になりました。このおもりの重さを答えなさい。

10 右の図の長方形 ABCD において、点 P は B を出発して、辺上を C、D を通って A まで、秒速 1 cm で動きます。点 P が動き始めてから x 秒後の $\triangle ABP$ の面積を y cm 2 として、x と y の関係をグラフに表しなさい。




[11] 3 点 A (0, 12), B (6, 0), C (0, 3) がある。点 C を通り $\triangle AOB$ の面積を 2 等分する直線 ℓ と辺 AB の交点を D とする。このとき,次の問いに答えなさい。

- (2) 直線 AB の式を求めなさい。
- (3) 点 D の座標を求めなさい。
- (4) 直線ℓの式を求めなさい。

12 右の図のように、直線ℓは2点A(-3, 4), B(-5, 0)
を通り、直線mは2点A、C(3, 0)を通っている。
点Bを通り、△ABCの面積を2等分する直線の式を求めなさい。

